优秀教案的灵活性使得教师可以应对各种突发情况,为了更好地实施教学计划,教师应认真撰写详细的教案,做好充分的准备,小淘范文网小编今天就为您带来了数学必修二教案6篇,相信一定会对你有所帮助。
数学必修二教案篇1
教学目标
(1)了解算法的含义,体会算法思想.
(2)会用自然语言和数学语言描述简单具体问题的算法;
(3)学习有条理地、清晰地表达解决问题的步骤,培养逻辑思维能力与表达能力
教学重难点
重点:算法的含义、解二元一次方程组的算法设计.
难点:把自然语言转化为算法语言.
情境导入
电影《神枪手》中描述的凌靖是一个天生的狙击手,他百发百中,最难打的位置对他来说也是轻而易举,是香港警察狙击手队伍的第一神枪手.作为一名狙击手,要想成功地完成一次狙击任务,一般要按步骤完成以下几步:
第一步:观察、等待目标出现(用望远镜或瞄准镜);
第二步:瞄准目标;
第三步:计算(或估测)风速、距离、空气湿度、空气密度;
第四步:根据第三步的结果修正弹着点;
第五步:开枪;
第六步:迅速转移(或隐蔽).
以上这种完成狙击任务的方法、步骤在数学上我们叫算法.
●课堂探究
预习提升
1.定义:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.
2.描述方式
自然语言、数学语言、形式语言(算法语言)、框图.
3.算法的要求
(1)写出的算法,必须能解决一类问题,且能重复使用;
(2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果.
4.算法的特征
(1)有限性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束.
(2)确定性:算法的计算规则及相应的计算步骤必须是确定的
(3)可行性:算法中的每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果.
(4)顺序性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,后一步是前一步的后续,且除了最后一步外,每一个步骤只有一个确定的后续.
(5)不性:解决同一问题的算法可以是不的
数学必修二教案篇2
教学目的:
掌握圆的标准方程,并能解决与之有关的问题
教学重点:
圆的标准方程及有关运用
教学难点:
标准方程的灵活运用
教学过程:
一、导入新课,探究标准方程
二、掌握知识,巩固练习
练习:
1.说出下列圆的方程
⑴圆心(3,-2)半径为5
⑵圆心(0,3)半径为3
2.指出下列圆的圆心和半径
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
3.判断3x-4y-10=0和x2+y2=4的位置关系
4.圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程
三、引伸提高,讲解例题
例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的'数学方法)
练习:
1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。
2、某圆过a(-10,0)、b(10,0)、c(0,4),求圆的方程。
例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求a2p2的长度。
例3、点m(x0,y0)在x2+y2=r2上,求过m的圆的切线方程(一题多解,训练思维)
四、小结练习p771,2,3,4
五、作业p811,2,3,4
数学必修二教案篇3
教学目标
1.数列求和的综合应用
教学重难点
2.数列求和的综合应用
教学过程
典例分析
3.数列{an}的前n项和sn=n2-7n-8,
(1)求{an}的通项公式
(2)求{|an|}的前n项和tn
4.等差数列{an}的.公差为,s100=145,则a1+a3 + a5 + …+a99=
5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=
6.数列{an}是等差数列,且a1=2,a1+a2+a3=12
(1)求{an}的通项公式
(2)令bn=anxn ,求数列{bn}前n项和公式
7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数
8.在等差数列{an}中,a1=20,前n项和为sn,且s10= s15,求当n为何值时,sn有最大值,并求出它的最大值
.已知数列{an},an∈n,sn= (an+2)2
(1)求证{an}是等差数列
(2)若bn= an-30 ,求数列{bn}前n项的最小值
0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈n)
(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列
(2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.
11 .购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)
12 .某商品在最近100天内的价格f(t)与时间t的
函数关系式是f(t)=
销售量g(t)与时间t的函数关系是
g(t)= -t/3 +109/3 (0≤t≤100)
求这种商品的日销售额的最大值
注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值。
数学必修二教案篇4
一、教学目标:
1、知识与技能目标
①理解循环结构,能识别和理解简单的框图的功能。
②能运用循环结构设计程序框图解决简单的问题。
2、过程与方法目标
通过模仿、操作、探索,学习设计程序框图表达,解决问题的过程,发展有条理的思考与表达的能力,提高逻辑思维能力。
3、情感、态度与价值观目标
通过本节的自主性学习,让学生感受和体会算法思想在解决具体问题中的意义,增强学生的创新能力和应用数学的意识。三、教法分析
二、教学重点、难点
重点:理解循环结构,能识别和画出简单的循环结构框图,
难点:循环结构中循环条件和循环体的确定。
三、教法、学法
本节课我遵循引导发现,循序渐进的思路,采用问题探究式教学。运用多媒体,投影仪辅助。倡导“自主、合作、探究”的学习方式。
四、 教学过程:
(一)创设情境,温故求新
引例:写出求 的值的一个算法,并用框图表示你的算法。
此例由学生动手完成,投影展示学生的做法,师生共同点评。鼓励学生一题多解——求创。
设计引例的目的是复习顺序结构,提出递推求和的方法,导入新课。此环节旨在提升学生的求知欲、探索欲,使学生保持良好、积极的情感体验。
(二)讲授新课
1、循序渐进,理解知识
?1】选择“累加器”作为载体,借助“累加器”使学生经历把“递推求和”转化为“循环求和”的过程,同时经历初始化变量,确定循环体,设置循环终止条件3个构造循环结构的关键步骤。
(1)将“递推求和”转化为“循环求和”的缘由及转化的方法和途径
引例“求 的值”这个问题的自然求和过程可以表示为:
用递推公式表示为:
直接利用这个递推公式构造算法在步骤 中使用了 共100个变量,计算机执行这样的算法时需要占用较大的内存。为了节省变量,充分体现计算机能以极快的速度进行重复计算的优势,需要从上述递推求和的步骤 中提取出共同的结构,即第n步的结果=第(n-1)步的结果+n。若引进一个变量 来表示每一步的计算结果,则第n步可以表示为赋值过程 。
(2)“ ”的含义
利用多媒体动画展示计算机中累加器的工作原理,借助形象直观对知识点进行强调说明① 的作用是将赋值号右边表达式 的值赋给赋值号左边的变量 。
②赋值号“=”右边的变量“ ”表示前一步累加所得的和,赋值号“=”左边的“ ”表示该步累加所得的和,含义不同。
③赋值号“=”与数学中的等号意义不同。 在数学中是不成立的。
借助“累加器”既突破了难点,同时也使学生理解了 中 的变化和 的含义。
(3)初始化变量,设置循环终止条件
由 的初始值为0, 的值由1增加到100,可以初始化循环变量和设置循环终止条件。
?2】循环结构的概念
根据指定条件决定是否重复执行一条或多条指令的控制结构称为循环结构。
教师学生一起共同完成引例的框图表示,并由此引出本节课的重点知识循环结构的概念。这样讲解既突出了重点又突破了难点,同时使学生体会了问题的抽象过程和算法的构建过程。还体现了我们研究问题常用的“由特殊到一般”的思维方式。
2、类比探究,掌握知识
例1:改造引例的程序框图表示①求 的值
②求 的值
③求 的值
④求 的值
此例可由学生独立思考、回答,师生共同点评完成。
通过对引例框图的反复改造逐步帮助学生深入理解循环结构,体会用循环结构表达算法,关键要做好三点:①确定循环变量和初始值②确定循环体③确定循环终止条件。
数学必修二教案篇5
教学目的:
(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;
(3)能用venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
教学重点:
集合的交集与并集、补集的概念;
教学难点:
集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;
【知识点】
1、并集
一般地,由所有属于集合a或属于集合b的元素所组成的集合,称为集合a与b的并集(union)
记作:a∪b读作:“a并b”
即:a∪b={x|x∈a,或x∈b}
venn图表示:
第4 / 7页
a与b的所有元素来表示。 a与b的交集。
2、交集
一般地,由属于集合a且属于集合b的元素所组成的集合,叫做集合a与b的交集(intersection)。
记作:a∩b读作:“a交b”
即:a∩b={x|∈a,且x∈b}
交集的venn图表示
说明:两个集合求交集,结果还是一个集合,是由集合a与b的公共元素组成的集合。
拓展:求下列各图中集合a与b的并集与交集
a
说明:当两个集合没有公共元素时,两个集合的.交集是空集,不能说两个集合没有交集
3、补集
全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(universe),通常记作u。
补集:对于全集u的一个子集a,由全集u中所有不属于集合a的所有元素组成的集合称为集合a相对于全集u的补集(complementary set),简称为集合a的补集,
记作:cua
即:cua={x|x∈u且x∈a}
第5 / 7页
补集的venn图表示
说明:补集的概念必须要有全集的限制
4、求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分
交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合venn图或数轴进而用集合语言表达,增强数形结合的思想方法。
5、集合基本运算的一些结论:
a∩b?a,a∩b?b,a∩a=a,a∩?=?,a∩b=b∩a
a?a∪b,b?a∪b,a∪a=a,a∪?=a,a∪b=b∪a
(cua)∪a=u,(cua)∩a=?
若a∩b=a,则a?b,反之也成立
若a∪b=b,则a?b,反之也成立
若x∈(a∩b),则x∈a且x∈b
若x∈(a∪b),则x∈a,或x∈b
¤例题精讲:
?例1】设集合u?r,a?{x|?1?x?5},b?{x|3?x?9},求a?b,?u(a?b)。解:在数轴上表示出集合a、b。
?例2】设a?{x?z||x|?6},b??1,2,3?,c??3,4,5,6?,求:
(1)a?(b?c);(2)a??a(b?c)。
?例3】已知集合a?{x|?2?x?4},b?{x|x?m},且a?b?a,求实数m的取值范围。
xx且x?n}【例4】已知全集u?{x|x?10,,a?{2,4,5,8},b?{1,3,5,8},求
cu(a?b),cu(a?b),(cua)?(cub),(cua)?(cub),并比较它们的关系。
数学必修二教案篇6
一、教学背景分析
1.教学内容分析
本节课是高中数学(北师大版必修5)第一章第3节第二课时,是“等差数列的前n项和”与“等比数列”内容的延续,与函数等知识有着密切的联系,也为以后学数列的求和,数学归纳法等做好铺垫。而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养,如在“分期付款”等实际问题中也经常涉及到。本节以数学文化背境引入课题有助于提升学生的创新思维和探索精神,是提高数学文化素养和培养学生应用意识的良好载体。
2.学情分析
从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是,本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。教学对象是高二理科班的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不完全。
二.教学目标
依据新课程标准及教材内容,结合学生的认知发展水平和心理特点,确定本节课的教学目标如下:
1.知识与技能目标: 理解等比数列前n项和公式推导方法;掌握等比数列前n项和公式并能运用公式解决一些简单问题。
2.过程与方法目标:感悟并理解公式的推导过程,感受公式探求过程所蕴涵的从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质,初步提高学生的建模意识和探究、分析与解决问题的能力。
3.情感与态度目标:通过经历对公式的探索过程,对学生进行思维严谨性的训练,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美和数学的严谨美。
三.重点,难点
教学重点:等比数列前“等比数列的前n项和”项和公式的推导及其简单应用。
教学难点:公式的推导思想方法及公式应用中q与1的关系。
四.教学方法
启发引导,探索发现,类比。
五. 教学过程
(一)借助数学文化背境提出问题
在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?
?设计意图】:设计这个数学文化背境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容也紧扣本节课的主题与重点。
问题1:同学们,你们知道西萨要的是多少粒小麦吗?
引导学生写出麦粒总数“等比数列的前n项和”
(二)师生互动,探究问题
问题2:“等比数列的前n项和”
有些学生会说用计算器来求(老师当然肯定这种做法,但学生很快发现比较难求。)
问题3:同学们,我们来分析一下这个和式有什么特征?
(学生会发现,后一项都是前一项的2倍)
问题4:如果我们把(1)式每一项都乘以2,就变成了它的后一项,那么我们若在此等式两边同以2,得到(2)式:
“等比数列的前n项和”
比较(1)(2)两式,你有什么发现?(学生经过比较发现:(1)、(2)两式有许多相同的项)
问题5:将两式相减,相同的项就消去了,得到什么呢?。(学生会发现:“等比数列的前n项和”
?设计意图】:这五个问题层层深入,剖析了错位相减法中减的妙用,使学生容易接受为什么要错位相减,经过繁难的计算之后,突然发现上述解法,也让学生感受到这种方法的神奇。
问题6:老师指出这就是错位相减法,并要求学生纵观全过程,反思为什么(1)式两边要同乘以2呢?
?设计意图】:经过繁难的计算之苦后,突然发现上述解法,让学生对错位相减法有一个深刻的认识,也为探究等比数列求和公式的推导做好铺垫。
(三)类比联想,构建新知
这时我再顺势引导学生将结论一般化。
问题7:如何求等比数列“等比数列的前n项和”的前“等比数列的前n项和”项和“等比数列的前n项和”:
即:“等比数列的前n项和”
(学生相互合作,讨论交流,老师巡视课堂,并请学生上台板演。)
注:学生已有上面问题的处理经验,肯定有不少学生会想到“错位相减法”,教师可放手让学生探究。
将“等比数列的前n项和”两边同时乘以公比“等比数列的前n项和”后会得到“等比数列的前n项和”,两个等式相减后,哪些项被消去,还剩下哪些项,剩下项的符号有没有改变?这些都是用错位相减法求等比数列前“等比数列的前n项和”项和的关键所在,让学生先思考,再讨论,最后师在突出强调,加深印象。
两式作差得到“等比数列的前n项和”时,肯定会有学生直接得到“等比数列的前n项和”,不忙揭露错误,后面再反馈这个易错点,从而掌握公式的本质。
?设计意图】:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的成就感。增强学习数学的兴趣和学好数学的信心。
问题8:由 “等比数列的前n项和” 得 “等比数列的前n项和”对不对呢?这里的“等比数列的前n项和”能不能等于1呀?等比数列中的公比能不能为1?那么“等比数列的前n项和”时是什么数列?此时“等比数列的前n项和”?你能归纳出等比数列的前n项和公式吗? (这里引导学生对“等比数列的前n项和” 进行分类讨论,得出公式,同时为后面的例题教学打下基础。)
再次追问:结合等比数列的通项公式“等比数列的前n项和” ,如何把“等比数列的前n项和” 用“等比数列的前n项和” 、“等比数列的前n项和” 、“等比数列的前n项和” 表示出来?(引导学生得出公式的另一形式)
公式:
“等比数列的前n项和”
注:公式的理解
知三求二:n q a1 an sn ;
n的含义:项数(通项公式是qn-1);
q的含义:公比(注意q=1,分类讨论);
错位相减法:乘公比(作用是构造许多相同项)后错开一项后再减。
?设计意图】:通过反问学生归纳,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。这一环节非常重要,尽管仅仅几句话,然而却有画龙点睛之妙用。
(四)讨论交流,延伸拓展
问题9: 探究等比数列前n项和公式,还有其它方法吗?
“等比数列的前n项和”(学生讨论交流,老师指导。依学生的认知水平可能会有以下几种方法)
(1)错位相减法
“等比数列的前n项和”(2)提出公比q
“等比数列的前n项和”(3)累加法
?设计意图】:以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围. 这有非常重要的研究价值,是研究性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展有促进作用.
(五) 应用公式,深化理解
例1:在等比数列{ an }中,
(1)已知a1=3,q=2,n=6,求sn;
(2)已知a1=8,q=1/2,an =1/2,求sn;
(3)已知a1=-1.5,a4=96,求q与s4;
(4)已知a1=2,s3=26,求q与a3。
?设计意图】:初步应用公式,理解等比数列的基本量也可“知三求二”,体会方程思想。
例2:等比数列{ an }中,已知a3=3/2,s3=9/2,求a1与q。
?设计意图】:注意公式中的分类讨论思想。
例3:求数列{n+ }的前n项和。
?设计意图】:将未知问题转化为已知问题,进一步体会等比数列前n项和公式的应用。
练习1:求等比数列“等比数列的前n项和”前8项和;
练习2:a3= ,s9= ,求a1和q;
练习3:求数列{n+an}的前n项和。
(先由学生独立求解,然后抽学生板演,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予适时的表扬。)
?设计意图】:通过练习,深化认识,增加思维的梯度的同时,提高学生的模式识别能力,渗透转化思想.
(六)总结归纳,加深理解
问题10:这节课你有什么收获?学到了哪些知识和方法?
?设计意图】:以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法等方面总结。以此培养学生的口头表达能力,归纳概括能力。
(学生小结归纳,不足之处老师补充说明。)
1.公式:等比数列前n项和
当q≠1时,sn= =
当q=1时, sn=na1
2.方法:错位相减法(乘以公比)
3.思想:分类讨论(公式选择)
(七)故事结束,首尾呼应
最后我们回到故事中的问题,可以计算出国王奖赏的小麦约为1.84×1019粒,大约7000亿吨,用这么多小麦能从地球到太阳铺设一条宽10米、厚8米的大道,大约是全世界一年粮食产量的459倍,显然国王兑现不了他的承诺了。
?设计意图】:把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维。
(八)课后作业,分层练习
(1)阅读本节内容,预习下一节内容;
(2) 书面作业:习题p30 8 .10;
(3)拓展作业:求和:“等比数列的前n项和”
?设计意图】:出选作题的目的是注意分层教学和因材施教,让学有余力的学生有思考的空间。